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Abstract

With the continuous increase in the scale and complexity of software, software testing faces enormous
challenges. Defect prediction, as a crucial part of software testing, plays a key role in improving
software quality and reducing costs. This paper conducts an in-depth analysis of the application
effectiveness of artificial intelligence technology in software testing defect prediction. It introduces the
related principles and methods in detail and demonstrates their strengths and weaknesses through actual
cases and data analysis. The aim is to provide a reference for the software industry to better utilize
artificial intelligence technology for defect prediction.

Keywords Artificial Intelligence; Software Testing; Defect Prediction

1 Introduction

In today's digital age, software has widely permeated into various fields, and its quality is
directly related to user experience, business operations, and even social security. Software testing is an
important means to ensure software quality, and defect prediction can identify modules that may contain
defects in advance, allowing for a more rational allocation of testing resources, thereby improving
testing efficiency and software quality [1][2]. Traditional defect prediction methods often rely on
manual experience and simple statistical models, which have limited accuracy and efficiency when
faced with complex software systems. The rapid development of artificial intelligence technology has
brought new opportunities to defect prediction, and its powerful data processing and pattern recognition
capabilities are expected to significantly enhance the effectiveness of defect prediction.

2 The principle of artificial intelligence technology in defect prediction

Logistic Regression is a widely used classification algorithm that predicts the probability of a sample
belonging to a certain category [3]. Its basic formula is:

1
P(Y = 1|X) = 1+e_(BO+lel+[32X2+~~'+[3an) (1)

P (Y=1|X) represented by a given feature X = (X{,X;,--,X,) » the probability that the sample
belongs to category 1(defective) given the feature set, B is a parameter of the model, which is estimated
through training data. The logistic regression model determines the optimal parameters by maximizing
the likelihood function, thereby achieving classification predictions for the samples.

A decision tree is a classification model based on a tree structure [4], which constructs decision rules
by recursively partitioning features. The construction process of a decision tree involves selecting the
best feature for splitting according to indicators such as information gain, information gain ratio, or Gini
index until certain stopping conditions are met. For example, the criterion for splitting a decision tree
based on information gain is calculated as follows:

IG(D,A) = H(D) ~ 3., 'TIHD") @)

D represents a subset of feature A, the decision tree model is intuitive and easy to understand, capable
of generating interpretable rules, which are convenient for comprehension and application.
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Integrating the information, logistic regression is used to predict the probability of a sample
belonging to a certain category, such as determining whether a software module has defects. It achieves
this by weighting numerous input features and synthesizing the likelihood of the sample belonging to a
specific category [5]. The model training process involves continuously adjusting these weights to make
the prediction results as close as possible to the actual situation, thereby enabling the classification
prediction of samples. Decision trees construct decision rules based on a tree-like structure. They
recursively partition the input features; for example, in software defect prediction, they gradually refine
the dataset based on certain code features (like complexity and change frequency). Each internal node
corresponds to a decision condition on a feature, the branches represent the different outcomes of that
condition, and the leaf nodes correspond to the final classification results, such as determining whether a
software module has defects. Decision tree models are very intuitive, and the generated decision rules
are casy to understand, allowing developers to clearly see which features were used to make the
respective predictions.

3 Artificial Intelligence-Based Defect Prediction Methods

3.1 Data Source

From the code repository, a wealth of code-related information can be obtained. For example, through
version control systems (such as Git), historical records such as the modification time, author, and
specific content of each code file can be retrieved. This information is of great value for analyzing the
stability of the code and potential defects. Test reports meticulously record defect information
discovered during the software testing process, including the location of the defect, detailed description,
severity, and discovery time, and are the core data source for defect prediction [6]. Factors such as the
experience and skill level of developers may also affect software quality. Collecting information about
developers’ years of work experience, the number of projects they have participated in, and the roles
they have played in projects can serve as auxiliary data, providing a more comprehensive perspective for
defect prediction.

3.2 Logical Framework

In the field of software testing, the integration of artificial intelligence technology into the defect
prediction process has formed a systematic overall framework. Starting from the data level, it first
widely collects information such as the number of lines of code, complexity, modification history from
the code repository, defect location, severity in test reports, as well as auxiliary data like the work
experience of developers. After that, these data are cleaned, missing values and outliers are processed,
and the scale is standardized. In the feature processing phase, feature selection is carried out using filter
methods, wrapper methods, and embedded methods, while feature extraction is conducted from the
perspectives of code structure, text mining, and machine learning. In the model application stage,
models such as logistic regression and neural networks are selected based on data characteristics and
task requirements, training sets and test sets are divided for model training, and parameters are
optimized through methods like cross-validation [7]. Finally, the model's performance is evaluated using
metrics such as accuracy and recall rate. The various stages of the overall framework are closely linked
and progressive, aiming to accurately predict software defects and help improve software quality and
testing efficiency. The overall framework is shown as Figure 1.
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Fig. 1. Research Framework

3.3  Model Training and Evaluation

Step 1: Divide the dataset into training and testing sets. The collected data is divided into a certain
proportion, usually the training set accounts for 70% - 80%, and the testing set accounts for 20% - 30%.
The training set is used to train the model, allowing it to learn patterns and regularities in the data; the
testing set is used to evaluate model performance. To improve the model's generalization ability,
stratified sampling can be used to ensure that the proportions of various samples in the training and
testing sets are consistent with the original data, avoiding model overfitting or underfitting due to
unbalanced sample distribution.

Step 2: Select appropriate models and parameters. Choose suitable artificial intelligence models based
on data characteristics and the requirements of the defect prediction task. For binary classification
problems (determining whether a software module has defects), models such as logistic regression and
decision trees are more applicable; for multi-classification problems (determining the type of defect),
models like support vector machines and neural networks may perform better. During the parameter
tuning process, methods such as grid search and random search can be used to traverse different
parameter combinations and select the parameters that optimize model performance.

Step 3: Train the model. Use the training set to train the selected model, and adjust the model
parameters continuously to allow the model to gradually learn the patterns in the data. During the
training process, optimization algorithms such as batch gradient descent and stochastic gradient descent
are used to update the model parameters in order to minimize the loss function. For example, for logistic
regression models, the cross-entropy loss function is commonly used to measure the difference between
the predicted values and the true values. By continuously iterating and updating the parameters, the
value of the loss function is gradually reduced until the model converges.

4 Conclusion

The research indicates that with the continuous development of artificial intelligence technology, new
algorithms and models will continue to emerge, which is expected to further improve the accuracy and
efficiency of defect prediction. At the same time, the integration of cross-domain technologies, such as
combining big data analytics and IoT (Internet of Things) technology to obtain more multi-dimensional
data, will provide a more comprehensive perspective for defect prediction. Strengthening the research on
model interpretability will not only allow artificial intelligence technology to deliver accurate results in
software testing defect prediction but also enable developers to clearly understand the basis for
predictions, thereby being more widely and deeply applied in the software industry and promoting the
continuous improvement of software quality.
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