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Abstract
To address the performance degradation and limited adaptability of traditional optimization algorithms
in big data environments, this paper proposes an optimization framework that integrates data
representation, feedback adjustment, and model fusion. Through feature compression and structural
modeling, data characteristics are embedded in the objective function expression, a search space
compression mechanism with dynamic feedback capability is constructed, and the robustness of the
algorithm is improved by combining parameter adaptation strategies. In the scenario of multi-source
heterogeneous data, an integrated optimization scheme is further introduced to improve the
generalization ability. Comparative and ablation experiments are carried out based on three types of real
data sets, and the superior performance of the proposed method in terms of accuracy, convergence and
resource control is systematically verified.
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1 Introduction

As data-driven technology systems develop, traditional optimization algorithms encounter problems
such as rigid model structures and insufficient environmental adaptability. In particular, in high-
dimensional and high-dynamic tasks such as industrial forecasting, power load, and traffic scheduling,
as the data scale grows exponentially, existing algorithms are often difficult to deploy due to
dimensionality disasters, hyperparameter sensitivity, or local convergence [1]. This limitation has
prompted optimization to gradually transition from static structural design to an intelligent optimization
mechanism with dynamic adjustment of data characteristics as the core [2]. In recent years, studies have
pointed out that introducing big data features into the algorithm scheduling process can effectively
improve the system convergence speed and resource utilization efficiency, especially in complex
engineering tasks, showing high mobility and stability.

However, most existing methods are still at the level of single-point optimization and static parameter
adjustment, lacking adaptability to heterogeneous data sources, feedback self-driving, and systematic
fusion mechanisms [3]. Some practices have shown that in multi-source data scenarios, the accuracy and
robustness of algorithms can be improved to a certain extent by automatically extracting related features
through neural networks and building multi-model joint strategies. However, in the face of the actual
needs of data distribution drift and task switching, the optimizer lacks a response channel to the external
environment and often cannot maintain stable performance [4]. In addition, parameter adjustments
during algorithm training still rely on manual experience and lack the endogenous ability to perceive
changes in data structure, resulting in inefficient iterative paths and increased tuning costs.

Based on this, this paper attempts to build an optimization system with structural elasticity and
dynamic adjustment capabilities, integrating feature compression, feedback adjustment and model fusion
modules, and completing objective function reconstruction and parameter adaptive update under a
unified data framework. To verify its engineering feasibility, the study conducted empirical tests in three
typical tasks: power load, e-commerce recommendation and traffic forecasting, and evaluated the
performance of the proposed strategy in terms of convergence efficiency, resource control and
generalization ability, providing a generalizable path for algorithm optimization in complex systems [5].
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2 Data-driven Modeling Mechanism and Representation Method

2.1 Data Expression Modeling for Optimization Problems

In the process of complex system modeling, optimizers often need to process large-scale, dynamically
changing data streams. Their essential task is to minimize or maximize a certain performance objective
function. In order to make the optimizer have data responsiveness, this paper introduces data
characteristics into the modeling objective function in the following form:

 ( , )~min ( ), ( )x y L f x y       D (1)

Among them, x is the input data, y is the target variable, f is the optimization model, L is the loss

function, ( ) is the regularization term,  and is the complexity adjustment factor. This objective
function introduces the real distribution D , which enables the optimizer to directly perceive the
changes in the data structure and realize parameter adjustment and solution space compression. In order
to quantify the impact of data scale on the performance of the objective function, three different data
subsets (small 10K, medium 100K, large 1M) in actual tasks are selected for simulation tests to compare
the loss convergence results of the optimizer:

Table 1. The impact of simulation data volume on optimizer convergence ability

Data volume Initial loss $L_0$ Final loss $L^*$ Convergence rounds Convergence
10K 1.832 0.071 48 yes

100K 2.016 0.089 67 yes
1M 2.207 — — No (divergent)

The experiments demonstrate that as the data volume increases from 10K to 1M, the model's initial
loss increases, the convergence speed decreases, and divergence occurs with 1M samples. This indicates
that traditional optimization methods exhibit reduced stability in high-dimensional data scenarios,
necessitating the introduction of data-aware mechanisms to facilitate convergence.

2.2 Feature Compression and Structural Representation Methods

In order to solve the common problems of high redundancy and strong correlation features in big
data, this paper introduces a structured compression mechanism, uses Sparse Autoencoder (SAE) to
extract embedded expressions, and compares it with PCA. PCA can only retain linear principal
components and has difficulty identifying nonlinear feature distributions; while SAE can identify
potential structures by training the network and is more suitable for task-driven scenarios.

The following figure is a visualization of the mapping of the two methods compressed to 64
dimensions under the same industrial-grade data (taking traffic prediction as an example, the original
dimension is 128):

Fig. 1. Comparison of dimensionality reduction effects between PCA and SAE (distribution separability of samples
in embedding space)
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After PCA embedding, the boundary between classes is blurred, and the overlap ratio exceeds 30%;
the boundary of SAE embedding space is clear, and the mean Euclidean distance between samples is
1.72, which is higher than 0.91 of PCA, indicating that the compressed expression maintains stronger
discrimination. In addition, in order to improve the sparsity and generalization ability of the network, the
activation function in the encoder uses ReLU, and the sparse constraint term is added to the loss
function. The final output vector dimension is 64, which is used for subsequent optimizer input.

2.3 Data Feedback Driven Optimization Mechanism Design

In order to establish the ability to dynamically adjust the optimizer structure according to data
changes, this paper constructs a four-stage feedback mechanism: data collection→feature
compression→parameter scoring→search space adjustment.

In the specific design, the solution space screening strategy based on the sample scoring function is
introduced as follows:

 score ( )S x S x    ∣
(2)

Among them,  is the trained scoring model,  is the retention threshold of the solution (set to the
top 30% quantile in this paper) . The scoring function calculates the gradient change rate of the objective
function based on the embedded features, thereby selecting a subset of the solution space that is more
sensitive to the target optimization, effectively reducing the search path.

The complete feedback process is shown in the figure below:

Fig. 2. Data-driven optimization feedback mechanism structure diagram

(Data input→Embedding learning→Scoring→Subspace screening→Parameter update→Objective
optimization)

In each iteration, the scoring module outputs the optimal sample response interval in the current
batch, which is used to update the optimizer parameters (such as learning rate, adaptive step, etc.).
Experiments have shown that this mechanism reduces the average training time from the original 185
seconds to 112 seconds at a sample size of 100K, and improves accuracy by 2.3%.

3 Design of Optimization Algorithms for Multi-source Data

3.1 Data Feedback Driven Optimization Mechanism Design

In actual engineering environments, optimization tasks are often not completed based on a single
structure or homogeneous data source. The data distribution, feature dimensions, and noise structure
generated by different business scenarios, sensor channels, or scheduling tasks are different. If they are
directly put into a unified optimization process without being processed, it is very easy to cause
problems such as unstable convergence, local optimality, or insufficient generalization ability. To this
end, starting from the algorithm structure, this paper designs a set of optimization strategies with search
space compression, parameter adaptive adjustment, and multi-source data fusion capabilities to ensure
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the stability of the algorithm in a multi-task environment. 3.1 Analysis of the adaptability of the
benchmark optimizer

In the experimental environment of this paper, we selected three types of commonly used optimizers
as the basis for comparison: standard gradient descent (SGD), evolutionary strategy (ES) and
reinforcement learning scheduling optimizer (RL-O). Their robustness under different data structures
was tested. The data sources were traffic flow prediction, power load curve and user behavior sequence,
with a total of 100K, and 10 samples were taken to evaluate their stability, resource consumption and
flexibility.

Table 2. Adaptability of different optimizers under multi-source data

Optimizer Type
Average number
of convergence

rounds

Convergence
Variance

Peak memory usage
(MB)

Whether all tasks have
converged

successfully
SGD 71 19.2 480 No (2 divergences)
ES 58 15.6 590 yes

RL-O 49 11.3 670 yes

Table 2 compares the convergence performance and resource consumption of the three optimizers
under multi-source tasks. The results show that the traditional SGD has the risk of divergence, the
evolution strategy (ES) is stable but has high resource usage, and the reinforcement learning optimizer
(RL-O) performs best in terms of convergence speed, stability and memory control, and is more suitable
for the dynamic optimization needs of complex tasks.

3.2 Design of Search Space Compression Mechanism

In high-dimensional or noisy scenes, the search space faced by the optimizer usually contains a large
number of low-yield or even misleading areas. To this end, this paper introduces a subspace screening
strategy based on a scoring function, which is defined as follows:

 score ( )S x S x    ∣
(3)

Among them,  is the sample value evaluation function trained under embedded expression,  and is
the quantile threshold. Taking the traffic prediction task as an example, after retaining the top 30% high-
quality data in the whole sample, the number of training rounds decreased by 22.5% on average, while
the accuracy increased by about 2.1%. In addition, this paper introduces a subspace evolution
mechanism with memory, which cross-integrates the subspace selected in each round with the historical
reserved set of the previous round, thereby reducing the risk of information loss.

3.3 Construction of Parameter Adaptive Adjustment Mechanism

In multi-task optimization, the optimizer's hyperparameter configuration (such as learning rate, batch
size, regularization term coefficient, etc.) should be updated in real time according to the dynamic
changes of data. This paper introduces an adaptive adjustment mechanism based on feedback scoring.
The core idea is to make a joint inference through the target gradient direction fluctuation and historical
performance returns. Taking the learning rate as an example, the update rule is as follows :

1 1 t
t t

L
t

  

       (4)

Among them, tL is the loss change of the current round,  and is the adjustment factor. This
strategy can reduce the update amplitude in the stable stage and automatically increase the exploration
step size when the performance declines. After deployment tests in three tasks, this mechanism reduces
the training time by an average of 13.6% and effectively suppresses performance fluctuations.
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Fig. 3. Adaptive learning rate update path as feedback gradient changes

Figure 3 shows the dynamic path of the adaptive learning rate that automatically adjusts as the
gradient changes during training. It can be seen that when the loss function fluctuates greatly, the
learning rate automatically increases to enhance exploration, and gradually converges when it tends to
be stable, which helps to improve training efficiency and global optimality.

3.4 Fusion Optimization Strategy for Multi-Source Heterogeneous Data

Since the data features and objective functions of each task are essentially different, directly merging
them for training can easily lead to the model being biased towards a certain data structure, reducing the
overall generalization ability. To this end, this paper proposes a weighted multi-model fusion structure
and constructs the following optimization objectives:

 ( ) ( )

1
min ,

N
i i

i i
i
w L f 



 D
(5)

Among them,
( )iD is i the data set of the first category, iL is its corresponding loss function, iw and

is the weight (obtained based on the task importance and sample quality assessment). In order to
improve the fusion effect, a dynamic weight adjustment strategy is used in training: if the accuracy of a
task increases by more than 5% in the last three rounds, its weight is increased by 10%; if it decreases
continuously, reverse compression is performed to avoid overfitting.

Table 3. Comparison of accuracy and mean square error before and after fusion optimization (average of 3 tasks)

method Average accuracy Mean Squared Error (MSE)
Single-task training 86.7% 0.123

Static Fusion 88.1% 0.109
Dynamic Weighted Fusion 90.4% 0.092

Table 3 compares the average performance of three optimization strategies: single task, static fusion
and dynamic weighted fusion in three typical tasks. The results show that dynamic weighted fusion is
superior to other methods in both accuracy and mean square error, indicating that the fusion structure
has significant accuracy improvement and error compression effects in multi-source data modeling,
verifying the practicality and stability of the optimization strategy.

4 Experimental Design and Empirical Analysis

4.1 Experimental Data and Environment Settings

The experiment is based on the following three types of public or industrial simulation datasets:
Power load forecasting (Dataset-E): annual load monitoring data from a certain region, with 96 feature
dimensions and a sample size of 100K; Traffic status prediction (Dataset-T): including historical traffic
flow, speed and time period labels, with a sample size of 120K; E-commerce click behavior prediction
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(Dataset-C): recording user click sequences, time windows and contextual product features, with a
sample size of 80K.

Each type of data is divided into training, validation, and test sets in a ratio of 7:2:1. The experimental
environment is Python 3.10, built on an Intel i7 CPU + RTX 3060 GPU, with a maximum memory of
32GB, and the PyTorch framework is used to complete modeling and training.

Fig. 4. Distribution of statistical characteristics of three types of data samples

Figure 4 shows the sample density distribution of three types of data: power load, traffic status and e-
commerce behavior within 24 hours. It can be seen that the data of different tasks show obvious time-
period fluctuations, among which traffic data are concentrated in the morning and evening peaks, the
power load has significant differences between day and night, and e-commerce behavior is active at
night, reflecting the structural heterogeneity of multi-source data.

4.2 Experimental Process and Evaluation Indicators

The experiment is mainly divided into four stages: (1) data preprocessing and normalization; (2)
feature embedding compression (uniform dimensionality reduction to 64 dimensions); (3) optimization
model training (using the adaptive fusion optimization structure in Chapter 3); (4) comparative
verification and ablation experiments.

In order to quantitatively evaluate the performance of the algorithm, the following indicators are
defined: Accuracy: used for classification tasks; Mean Square Error (MSE): measures the accuracy of
prediction regression; Number of Epochs: the number of training rounds required to achieve the optimal
error; Maximum Memory Occupancy (MB): monitors algorithm resource consumption; Robustness
Index (σ): evaluates the output fluctuation amplitude during multiple rounds of operation.

4.3 Optimization Algorithm Performance Comparison

This paper compares the performance of the proposed optimization method (named DDO-Fuse) with
three representative benchmark algorithms: SGD optimization, genetic evolution strategy (GA) and
static ensemble optimization (SE). The results are as follows:

Table 4. Performance comparison results of optimization algorithms under different tasks

method
Dataset-

E<br>(MSE↓)
Dataset-

T<br>(Acc↑)
Dataset-

C<br>(Acc↑)
Convergence

rounds
Memory usage (MB)

SGD 0.154 83.1% 78.5% 65 410
GA 0.129 85.4% 81.2% 54 525
SE 0.118 86.3% 83.7% 58 580

DDO-Fuse 0.094 89.8% 87.5% 43 470

The results show that DDO-Fuse outperforms existing methods in prediction accuracy and
convergence speed, and its resource usage is at a controllable level, which verifies its efficiency and
practicality in data-driven optimization.
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Fig. 5. Convergence curves of different optimization algorithms (taking Dataset-E as an example)

(The horizontal axis is the number of training rounds, the vertical axis is the loss value, and DDO-
Fuse decreases faster and fluctuates less) Figure 5 shows the convergence curves of the four
optimization algorithms in the Dataset-E task. The results show that the DDO-Fuse method proposed in
this paper decreases the fastest in the early stage of training and has the lowest final loss. The
convergence speed and stability are better than the SGD, GA and SE methods, indicating that it has
better convergence efficiency and error control capabilities in complex data scenarios.

4.4 Ablation Experiment and Robustness Analysis

To verify the contribution of each module to the overall performance, this paper conducts ablation
tests on the core modules of DDO-Fuse in turn: Case-A: remove the search space compression module;
Case-B: remove the adaptive parameter adjustment mechanism; Case-C: use static fusion instead of
dynamic fusion.

Fig. 6. The impact of ablation of each module on model accuracy

The results show that the accuracy of Case-B decreases most significantly (3.6% on average),
indicating that the parameter adaptation mechanism is crucial to maintain the optimal learning path . The
impact of Case-A and Case-C is mainly reflected in the convergence speed and generalization error
fluctuation.

Table 5. Robustness test (standard deviation σ after 10 rounds of training)

method Dataset-E Dataset-T Dataset-C
DDO-Fuse 0.012 0.009 0.015

Optimal comparison algorithm 0.021 0.014 0.022

Table 5 shows the standard deviation σ of the results of 10 rounds of training for each optimization
method under three types of tasks, which is used to measure the stability of the model output. The results
show that DDO-Fuse has the smallest fluctuation in all tasks and is significantly better than the optimal
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comparison algorithm, which shows that it has stronger robustness and consistency in repeated training
and is suitable for actual deployment applications.

5 Summarize

This paper focuses on the performance degradation and lack of adaptability of algorithms in a big
data environment, and constructs an optimization mechanism framework with data structure perception
as the core. By introducing data distribution terms in the objective function, the model is able to model
changes in the input structure; at the feature layer, sparse autoencoders are used to achieve embedding
compression, enhance the generalization adaptability of the optimizer to high-dimensional inputs, and
select high-value samples through scoring functions to construct effective subspaces and improve search
efficiency. In terms of optimization strategy, this paper designs a parameter self-adjustment mechanism
based on feedback gradients to achieve dynamic regulation of key hyperparameters such as learning
rate; for multi-source heterogeneous tasks, a weighted fusion method is introduced to solve the problems
of structural differences and information conflicts, and ensure stability and coordination during model
training.

The experimental part conducts comparative tests, ablation analysis and robustness verification based
on three types of actual task data. The results show that the proposed structure performs well in terms of
convergence speed, accuracy and stability. The overall system realizes a closed-loop linkage from data-
driven to structural feedback, providing a feasible path for the structural design and deployment
application of optimization algorithms under complex tasks.
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基於大數據驅動的算法優化研究
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摘要：針對傳統優化算法在大數據環境中面臨的性能退化與適應性不足問題，本文從研究者視角

出發，構建了一種融合數據表征、反饋調節與模型融合的優化框架。通過特征壓縮與結構建模，

將數據特性嵌入到目標函數表達中，構建具備動態反饋能力的搜索空間壓縮機製，並結合參數自

適應策略提升算法穩健性。在多源異構數據場景下，進一步引入集成優化方案提升泛化能力。基

於三類真實數據集開展對比與消融實驗，系統驗證了所提方法在準確性、收斂性與資源控製等方

面的優越表現。

關鍵詞：大數據驅動；優化算法；動態反饋；參數自適應
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