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Abstract

With the rapid development of autonomous driving technology, its safety issues have increasingly
attracted attention. Through in-depth analysis of autonomous driving technology, this paper focuses on
combing the role of the Vision System in the autonomous driving system architecture, and points out its
key position in information perception, environmental modeling, and decision planning. The existing
safety test methods are systematically evaluated, and their limitations in adapting to rapidly changing
driving environments are identified. Aiming at the specific needs of the visual system, a new safety test
method framework is proposed, covering Data Preparation, Testing Process, Evaluation Metrics and
other aspects. It provides a new theoretical basis and practical guidance for autonomous driving safety
testing assisted by the visual system, and promotes the further development of this field.
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1 Introduction

With the rapid advancement of science and technology, autonomous driving technology has
gradually become an indispensable part of modern transportation systems, especially in the context of
Intelligent Transportation System and Smart City construction. The application prospect of autonomous
driving is becoming more and more important [1]. However, with the widespread application of this
technology, the accompanying safety issues have become increasingly prominent, triggering widespread
concern in academia and industry. Research on autonomous driving safety test methods in complex
urban traffic scenarios has become an important issue that researchers and engineers urgently need to
solve [2].

2 Overview of Autonomous Driving Technology

Autonomous driving technology integrates sensors, computer vision, artificial intelligence, and
control systems to realize autonomous vehicle driving. Its core includes environmental perception,
decision planning and control execution. Autonomous driving technology has great potential in
improving traffic efficiency, reducing accidents, and promoting the development of smart cities. In the
future, it is expected to be widely used in passenger cars, commercial vehicles, and specific fields. In
order to adapt to the increasingly complex urban traffic conditions, the research on safety testing
technology of autonomous driving technology is particularly important.

3 Application of Vehicle-Road Collaboration and Visual System Fusion in
Autonomous Driving

In the development of autonomous driving technology, the visual system, as a key sensor, plays a
vital role in realizing vehicle-road collaboration. It captures information about the surrounding
environment through cameras, and uses image processing algorithms to analyze this information, so as
to realize the recognition and tracking of other vehicles, pedestrians, traffic signs and obstacles.
Specifically, as follows:
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3.1 The Role of the Vehicle End

Environmental perception and target recognition: It can identify the driving state, distance, speed, etc.
of the vehicle in front, and provide a basis for following, overtaking and other operations. It can also
detect pedestrians, traffic signs and traffic lights, such as reminding vehicles in time when pedestrians
cross the road, and making accurate responses to red lights, speed limit signs, etc., to ensure driving
safety and compliance.

Lane detection and keeping: Recognize lane lines, help vehicles keep driving in the lane, and enable
vehicles to accurately drive along the lane in complex road sections such as curves and forks, reducing
lane departure, deviation and other situations, and reducing the risk of traffic accidents.

Auxiliary automatic driving decision-making: Provide rich visual information for the automatic
driving system, such as identifying obstacles and construction areas on the road, so that the vehicle can
plan the route in advance and make decisions such as deceleration and avoidance, thereby improving the
reliability and safety of automatic driving.

3.2 The Role of the Roadside

Traffic flow monitoring: The visual recognition system installed at intersections or road sections can
monitor traffic flow, vehicle type, speed, etc., provide data support for traffic management, help
optimize traffic signal timing, and alleviate congestion.

Event detection and early warning: It can monitor abnormal events such as traffic accidents and
vehicle breakdowns in real time, and notify the traffic management department and nearby vehicles in
time, which is convenient for rapid processing and reduces the impact on traffic.

Interaction and collaboration with vehicles: The road-side visual recognition system transmits the
recognized information, such as road conditions ahead, traffic control information, etc., to the vehicles
through the Internet of Vehicles technology, assisting vehicles to make better decisions and realizing
efficient collaboration of vehicle-road information.

Visual recognition technology plays a vital role in vehicle-road collaboration, but it also faces many
difficulties.

Firstly, at the technical level, the visual recognition and perception accuracy of vehicle-road
collaboration is affected by the external environment. In case of heavy rain, thick fog, and heavy snow,
the accuracy of the visual system will be significantly reduced. At the same time, complex
environments, such as road construction and a large number of obstacles, will also interfere with the
visual system's recognition of targets, resulting in inaccurate or missing information.

Secondly, the visual systems and vehicle-road collaboration equipment of different manufacturers
have differences in interfaces, protocols, etc., making it difficult to achieve seamless connection and
collaborative work, and there are system compatibility and interoperability problems.

Thirdly, the data collected by the visual system involves the privacy of vehicles and pedestrians. If
security measures are not in place during data transmission, storage and use, it is easy to cause data
leakage and lead to security risks and privacy issues.

4 Research on Automatic Driving Safety Test Methods

Under the background of the increasing development of autonomous driving technology, the safety
test related to it has become more and more important [5]. Due to the complexity of the ADS
(Automated Driving System) and the dynamic and changeable environmental characteristics, its safety
not only involves the evaluation of single technical parameters, but must comprehensively consider the
interaction between people and vehicles, and the relationship between vehicles and the environment [6].
The accident rate is an important indicator to measure the safety of autonomous vehicles. According to
statistics, although autonomous driving technology has shown potential in reducing the accident rate,
once a system failure or decision-making error occurs, the consequences may be more serious.
Therefore, timely and comprehensive safety testing is undoubtedly the prerequisite and foundation for
ensuring public safety.
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4.1  Analysis of Existing Test Methods

With the increasing maturity of autonomous driving technology, safety test methods are diversified
and have become the core link to evaluate the reliability of autonomous driving systems [7]. This section
will deeply analyze the different methods currently used in autonomous driving safety testing, and
explore their advantages, disadvantages and shortcomings in practical applications, which will provide
data support and theoretical basis for proposing new methods later [8].

For the detection accuracy of the autonomous driving system, using test automation technology, the
accuracy of the test reaches 90.55% [9]. The acquisition of this data reflects the excellent performance
of the system in environmental perception under specific test conditions. However, it is worth noting
that although the accuracy rate is high, the accuracy rate may be affected by various factors in actual
deployment, such as changing weather conditions, different road complexity, and the degree of sensor
optimization. At the same time, the detection accuracy of the autonomous driving system has increased
by 3%, which shows that the system has made certain progress in actively adapting to environmental
changes and continuously optimizing algorithms. Continued investment in algorithm optimization and
hardware upgrades in the future will be the key to improving the accuracy of the system.

The false detection rate of the system needs to be carefully evaluated. The data shows that the false
detection rates are 19.67%, 7.52% and 22.05% respectively [11]. A high false detection rate may lead to
frequent false warnings from the system, which will affect the safety and convenience of automatic
driving. Therefore, in the process of visual algorithm training and optimization, we must pay attention to
the accuracy and diversity of data to reduce false detection and improve the reliability of the overall
system.

Accuracy Analysis of Auto Drive System
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Fig. 1. Analysis of Detection Accuracy of Autonomous Driving System

The FOV (Field of View) of the visual system is another important safety test parameter. In this
study, the FOV data is quantified into multiple different values such as 30°, 60°, 100°, 130°and 190°
[10]. The breadth of the FOV directly affects the perception ability of the autonomous driving system to
the surrounding environment. A larger range of FOV enables the system to more comprehensively
identify potential obstacles and driving risks. However, the expansion of the field of view may introduce
a large amount of irrelevant information, thereby affecting the accuracy and response speed of
recognition. Therefore, how to balance the detection range and information processing efficiency when
designing a visual system is an urgent technical challenge to be solved.
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On the Response Time index, the system shows response times of 0.03 seconds, 1 second and 0.2
seconds, showing its important role in real-time performance. For autonomous driving systems, a very
short response time is obviously more ideal. The rapid response mechanism can not only improve
driving safety, but also enhance the comfort of passengers. It should be noted that the optimization of
response time needs to find an appropriate balance between algorithm efficiency and computing

Fig. 2. Visual System Field of View and Impact

resources to avoid resource waste and computing bottlenecks.

The automatic driving visual processing speed is another key indicator that cannot be ignored. In this
study, the image processing speed of the system reaches different heights, including 120, 110, 100, 90
and 80 frames/second. A higher image processing speed means that the system can be more agile when
dealing with complex and changeable road conditions information. However, it should be pointed out
that when facing fast-moving scenes, whether the improvement of image processing speed can timely

support decision-making will directly affect the safety of the vehicle.

Comparison of the Reaction Time of the Autonomous Driving
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Although the current autonomous driving safety test methods have certain theoretical and practical
basis, they still face many challenges, such as the improvement of accuracy, the optimization of FOV
and processing speed, the reduction of reaction time and the control of false detection rate. Future
research should focus on overcoming the shortcomings of existing methods through continuous iteration
of algorithms and technological innovation, so as to realize safer and more efficient autonomous driving
technology.

4.2  Discussion on Vehicle-road Collaboration Based Visual System Test Method

In order to comprehensively and deeply explore the automatic driving safety test method of visual
system in complex vehicle-road collaboration scenarios, it is necessary to clarify the key role and
function of the visual system in automatic driving first [12]. Modern autonomous vehicles usually rely
on a variety of sensors to acquire environmental information, among which visual sensors (such as
cameras) are responsible for identifying and classifying the target objects in the environment (such as
pedestrians, vehicles, traffic signs, etc.). Therefore, effectively evaluating the accuracy and reliability of
the visual system, as well as its performance in complex environments, is the basis for improving the
safety of autonomous driving [13].

This study shows that the target recognition rate of the visual system shows significant differences in
different environments and conditions [14]. The business meaning behind these data can be analyzed
from multiple dimensions.

5 Design of Visual System Based Safety Test Method

In the field of modern intelligent transportation, the development of autonomous driving technology
has aroused widespread attention and research [15]. The core of this technology lies in the realization of
safe and reliable control of vehicles in complex traffic environments through various sensors and
algorithms. The importance of its safety test, especially in the automatic driving visual system, has
become increasingly prominent [16]. With the rapid development of deep learning and computer vision
technology, the safety test method of the automatic driving visual system urgently needs to be updated
and optimized according to the characteristics of emerging technologies [17].

In the architecture of the automatic driving visual system, the data acquisition module is responsible
for real-time acquisition of environmental information, while the information processing module
processes the data from sensors (such as cameras and lidar) through image recognition, object detection
and other technologies [18]. However, the effectiveness and stability of these technologies may face
many challenges in different lighting conditions, weather factors and complex traffic conditions.
Therefore, the safety test method not only needs to test the accuracy of the algorithm but also needs to
verify its Robustness under various uncertain factors.

5.1  Test Data Preparation

Table 1. Overview of Automatic Driving Safety Test Method Framework Based on Visual System

Module Technology Test method Evaluation index
Data acquisition Information processing
Image recognition
. . & ghition, Accuracy, robustness,
Visual system Camera, lidar target detection scene adaptability
Hybrid test P
Safety test Algorithm evaluation Scene adaptability
. Simulation . . .
Test environment nu Simulation evaluation Performance
environment
. . Environmental
Real environment Comprehensive test oy
adaptability
Real-time data . .
Data analysis Dynamic adjustment Safety standard
Y feedback Y J Y

In order to systematically discuss the implementation path of the automatic driving safety test
method, this paper starts with the necessity of safety test, analyzes the existing test methods and

5



Innovative Applications of Al
Vol.2 Issue 1(2025)

identifies their limitations. The existing methods often rely on the simulation environment for testing,
which may not be able to fully reflect the complexity of the real scene. For example, evaluating the
performance of the visual system only through simulation may not be able to capture the problems of
visual information loss or misidentification that may occur in extreme cases. Therefore, it is particularly
important to explore a comprehensive test scheme based on the Real-World Scenario.

Next, the test method of the visual system is discussed, and a hybrid testing strategy is suggested, that
is, combining simulation test and real vehicle test. By designing a comprehensive test framework,
including test data preparation, test process and evaluation index, the reliability and safety of the visual
system in different scenarios can be evaluated more effectively. This framework should be able to cover
multi-dimensional tests from static scenes to dynamic scenes, so as to ensure that the impact of different
environmental factors on the visual system can be fully evaluated. For example, in a specific urban
traffic environment, a real scene test including obstacles, pedestrians and other vehicle driving
conditions can be designed to verify the adaptability of the automatic driving system under complex
conditions.

Finally, the design of the visual system-based safety test method is not only limited to the
construction of the theoretical framework, but should constantly optimize the test strategy through a
large amount of data analysis and feedback of experimental results. At the same time, combining with
advanced artificial intelligence technology in the field, it is helpful to improve the intelligence and
comprehensiveness of the test, so as to ensure that the driving safety during automatic driving reaches a
higher standard. When carrying out future research, we should deeply explore how to use real-time data
to dynamically adjust the test strategy, so as to cope with the rapid changes in technology development.

5.2 Test Process and Evaluation Index

In the field of autonomous driving, the design of safety test methods based on visual system is a key
link to ensure the efficient and safe operation of autonomous driving vehicles [19]. For the establishment
of the test method framework, it is necessary to construct a systematic evaluation index and process to
ensure that the visual system shows the expected safety and reliability in complex environments [20].
The following content will systematically analyze the various steps of the test process, and discuss in
detail the evaluation indexes that need to be defined, so as to comprehensively evaluate the safety
performance of the visual system in different scenarios.

Multi-dimensional evaluation index system

According to the evaluation index system and systematic test process framework designed for the
safety test of the automatic driving visual system, refer to the functional safety standard conforming to
ISO 26262 and the automatic driving grading requirements of SAE J3016:
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Table 2. Evaluation Index System of Automatic Driving Safety Coefficient

No. Test items Index Value
Target detection confidence >98% @100m
Continuous frame accuracy of
ultgt o kl.l Y F1-score>0.95
Perception ability multi-larget racking
1 benchmark Intersection ratio Qf semantic 1oU>0.85
segmentation =
Lane line detection lateral
. <15cm@80km/h
deviation
Light adaptation 1075 lux dynamic range coverage
Extreme weather recognition >85% in rain, fog and snow
) Depth of environmental Road retlentlon rate - Scenes
. t truct .
understanding oac topology reconstruction 3D positioning error <0.1m
accuracy
Dynamic object intention . .
Y 1€ 0b) Pedestrian / vehicle >92%
prediction accuracy
Monocular fall}lre compensation <200ms
time
o . . Function retention rate when 50%
3 Fault response abili Sensor pollution recovery abilit ..
4 P vy poliu very Y of dirt is covered
Data conflict arbitration success >99.9% in multi-sensor fusion
rate scene
T 1 ligh k iti
unnel lig tanq dar. transition <0.5 seconds
adaptation time
Boundary condition Strong light glare suppression . . .
4 undaty €o £ light grare supp Retain effective pixels >80%
processing ability
Extreme weather penetration Detection distance when the
coefficient visibility of thick fog is 50m
24-hour continuous operation .
u uous op Performance degradation <3%
attenuation rate
5 Continuous operation Thermal defocus compensation -30°C~85°C temperature drift
stability ability compensation accuracy
Vibration environment Function integrity under 5-500Hz
robustness random vibration
Consistency of heterogeneous
1stency Seneou >99.5%
algorithm cross-validation
6 Safety redupdancy Spatiotemporal synchronization Clock offset < 1ms
mechanism fault tolerance threshold
Effecti f tat -
CCUVENEsS of eMETgency state L3—L2 transition success rate
downgrade strategy
Visual decisi isualizati . .
isual decision visualization Driver understanding 90%
confidence
Int tabilit . .y ing ti fd
7 nterpretability Risk prediction advance amount Warning time of dangerous scene
measurement >2.5 seconds
. Multi-modal prompt misreading
Clarity of tak t
arity of takeover reques rate <1%

1) Perception ability benchmark test method
Target detection confidence test: On a long straight test road, place multiple different types of targets
(such as vehicles, pedestrian dummies, etc.) at a distance of 100m. The autonomous driving vehicle

travels at a specified speed, and the detection device is used to record the detection of the target by the
vehicle sensor, and the proportion of the number of targets with the target detection confidence >98% to
the total number of targets at this distance is calculated.

Continuous frame accuracy of multi-target tracking: In a simulated urban traffic scene, set up
multiple moving targets (such as multiple driving vehicles, multiple walking pedestrians, etc.). During
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the driving of the autonomous driving vehicle, continuous frame images or data are collected. By
comparing the tracking results of the algorithm with the actual target position, quantity and other
information, the F1-score value is calculated to evaluate the continuous frame accuracy of multi-target
tracking.

Intersection ratio of semantic segmentation: Construct a variety of scene elements (such as roads,
buildings, vegetation, vehicle etc.). Collect continuous frame images or data during the driving of the
autonomous driving vehicle and calculate the IoU value by comparing the segmentation results of the
algorithm with the actual image information to evaluate the accuracy of semantic segmentation.

Lane line detection lateral deviation: Clear lane lines are set up on a standard test road. The
autonomous vehicle drives at a speed of 80 km/h, and its actual position relative to the ideal lane line
position is recorded in real-time using high-precision positioning equipment (such as differential GPS).
The lateral deviation between the two positions is then calculated.

2) Environmental Understanding Depth Test Method
Lighting Adaptability: In a lighting laboratory, simulate various lighting conditions ranging from very
low light (such as 0.1 lux) to extremely high light (10”5 lux). The autonomous vehicle is driven in the
simulated environment to test the impact of different lighting conditions on the vehicle's sensors and
algorithms, particularly for target detection, recognition, and other functions. The test verifies whether
the system can cover the dynamic range of 10"5 lux.

Extreme Weather Recognition Retention Rate: In a climate simulation test field, extreme weather
scenarios such as rain, fog, and snow are simulated. The autonomous vehicle drives in each of these
scenarios, recording its ability to recognize the road, objects, and other elements. The retention rate is
calculated based on how well the recognition functions are maintained under extreme weather
conditions.

Road Topology Reconstruction Accuracy: In a test area with a known accurate 3D map, the
autonomous vehicle reconstructs the road topology in real time during its driving process. By comparing
the reconstruction with the precise 3D map, the error in the vehicle's 3D localization is calculated to
evaluate the accuracy of the road topology reconstruction.

Dynamic Object Intent Prediction Accuracy: In a simulated traffic scenario, multiple dynamic objects
(such as pedestrians and vehicles) are set up, moving according to different behavior patterns (e.g.,
normal driving, lane change, turning, sudden acceleration/deceleration, etc.). The autonomous vehicle
predicts the intent of these dynamic objects in real time, comparing it with their actual behavior, and
calculates the accuracy of the intent prediction for pedestrians/vehicles.

3) Fault Response Capability Test Method

Monocular Failure Compensation Time: During the test, the monocular camera of the autonomous
vehicle is deliberately disabled (e.g., by obstruction, power failure, etc.), and a high-precision timer is
started. When other sensors or algorithms of the vehicle compensate for the monocular camera's function
and restore normal target detection and other functionalities, the timer is stopped, and the monocular
failure compensation time is recorded.

Sensor Contamination Recovery Ability: Special materials are used to simulate dirt, covering 50% of
the vehicle's sensor surfaces (e.g., cameras, radars, etc.). The vehicle then drives through a simulated
road scenario. The performance of the sensors before and after contamination is compared (e.g., target
detection quantity, accuracy, etc.), and the functionality retention rate is calculated.

Data Conflict Arbitration Success Rate: In a multi-sensor fusion test scenario, sensor data conflicts
are deliberately created (e.g., when different sensors have significantly different detection data for the
same target). The vehicle's data fusion and arbitration algorithms process the conflicting data, and the
success rate of data conflict arbitration is calculated by determining the ratio of successful conflict
resolutions to the total number of conflicts.

4) Boundary Condition Handling Test Method

Tunnel Light Transition Adaptation Time: On a test route that includes a tunnel, the autonomous
vehicle drives at a specified speed into and out of the tunnel. Using high-precision sensors and a timer,
the time it takes for the vehicle to adapt to the new lighting conditions and restore normal target
detection (such as sensor and algorithm adjustment to the sudden change in light when entering the
tunnel) is recorded, along with the similar adaptation time when exiting the tunnel.

Glare Suppression Ability in Strong Light: In a strong light simulation test environment, intense light
sources are used to simulate scenarios such as direct sunlight or high beams from oncoming vehicles.
The autonomous vehicle drives while facing this strong light, and its camera images are captured. The
proportion of valid pixels (those that are not overexposed or disturbed by glare) in the image is analyzed,
relative to the total number of pixels.
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Extreme Weather Penetration Coefficient: In a dense fog simulation test field, visibility is set to 50
meters. The autonomous vehicle drives through the area, testing its sensors (such as radar, cameras, etc.)
to determine the detection distance of objects ahead, thus assessing the extreme weather penetration
coefficient.

5) Continuous Operation Stability

24-Hour Continuous Operation Degradation Rate: The autonomous vehicle is operated continuously
for 24 hours in a simulated real-world road environment (such as a combination of city roads, highways,
and various road conditions). Every certain period of time (e.g., 1 hour), various performance metrics
(such as target detection accuracy, recognition rate, etc.) are recorded and compared with the initial
performance metrics to calculate the degradation ratio, i.e., the degradation rate.

Thermal Defocus Compensation Ability: In a high and low-temperature test chamber, the
autonomous vehicle is placed in a -30°C environment for a period of time to allow its sensors to reach
thermal equilibrium. The thermal defocus of sensors like cameras and the vehicle's algorithm
compensation are tested. Then, the temperature is gradually raised to 85°C, and the above tests are
repeated to assess the thermal drift compensation accuracy at different temperatures.

Vibration Environment Robustness: The autonomous vehicle is placed on a vibration test bench and
subjected to random vibration conditions in the range of 5-500Hz. During the vibration process, the
functionality integrity of the vehicle's sensors and autonomous driving system is tested (e.g., whether
data loss or functional anomalies occur).

6) Safety Redundancy Mechanism Test Method

Heterogeneous Algorithm Cross-Validation Consistency: In the test scenario, the autonomous vehicle
simultaneously runs two or more heterogeneous algorithms for tasks like target detection, decision-
making, and planning. The output results of the different algorithms are compared, and the proportion of
times the results are consistent is calculated, to evaluate the consistency of heterogeneous algorithm
cross-validation.

Spatiotemporal Synchronization Fault Tolerance Threshold: In the test environment, artificial clock
offsets are set between different sensors and system modules, starting from a small offset and gradually
increasing. When the autonomous driving system experiences a functional anomaly (e.g., target
detection errors, decision-making mistakes), the corresponding clock offset is recorded. The system's
ability to meet the fault tolerance requirement of clock offset <lms is then validated.

Emergency State Degradation Strategy Effectiveness: In a simulated emergency state scenario (e.g.,
severe sensor failure, system malfunction), the autonomous vehicle triggers its degradation strategy from
L3 autonomous driving to L2 autonomous driving. The success of the degradation process is recorded
(e.g., whether the driver can successfully take control, whether the vehicle maintains a safe state, etc.),
and the proportion of successful L3—L2 transitions is calculated relative to the total number of tests.

7) Explainability Measurement Test Method

Visual Decision Confidence Visualization: Multiple experienced drivers are involved in the test.
During the autonomous vehicle's drive, the vehicle's visual decision results (such as target detection
boxes, decision paths, etc.) are shown to the drivers. After the test, through surveys or on-site
questioning, the level of understanding of the visual results by the drivers is measured, and the
understanding ratio is calculated.

Risk Estimation Lead Time: In simulated dangerous scenarios (e.g., sudden braking of a vehicle
ahead, a pedestrian suddenly crossing), the autonomous vehicle monitors and estimates the risk in real-
time. The time from when the vehicle detects the potential hazard to when the warning is issued is
recorded, verifying whether the early warning time for dangerous scenarios meets the requirement of
>2.5 seconds.

Takeover Request Clarity: In scenarios where a driver takeover is required, the autonomous vehicle
issues a takeover request to the driver using multimodal methods, such as sound, images, and vibrations.
Multiple drivers are invited to participate in the test, and the number of misinterpretations of the
multimodal prompts by the drivers is recorded to calculate the misreading rate.

Full Lifecycle Testing Process

Based on the evaluation index system in Table 2, a corresponding system testing process is
constructed. The specific steps are shown in the table below.
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Table 3. Autonomous Driving Full Lifecycle Safety Coefficient

Step Test Stage Test Content Test Procedure
1. Import OpenScenario standard format scenarios
- n P i
Scenario library 2. Cre'ate a matrix of 1000+ typical- edge- extreme
construction SCENnarios
Virtual 3. Inject adversarial test samples (hallucination targets,
1 simulation optical attacks, etc.)
testing 4. Construct sensor physical models in CARLA/ESmini
Digital twin 5. Perform Monte Carlo random testing
verification 6. Execute Fault Tree Analysis (FTA) and Failure
Mode Analysis (FMEA)
7. Deploy at CATARC/MIRA proving grounds
Dedicated test 8. Dyngmlc lighting corridor (ﬂashmg/ gradient/ gl.are)
. . . 9. Multi-phase roads (dry/wet/ice surface alternation)
site verification - - -
10.Moving target system (variable speed/size/
Closed-Course .
2 testin trajectory)
& 11. Install high-precision RTK reference system
Real vehicle 12. Perform ISO 3888-2 double lane change test
calibration test 13. Conduct ECE R79 steering correction rate
verification
14. Accumulate 100,000 kilometers of natural driving
data collection
Progressive road | 15. Cover 10 climate zones (tropical rainforest-polar
verification environment)
16. Include 50+ special areas (schools/construction
Open road
3 testin zones/tunnel groups)
& 17. Deploy non-intrusive data recording system
18. Compare differences between human driver and
Shadow mode ..
. . system decisions
verification : : .
19. Build a closed loop for scenario automatic mining,
labeling, and regression testing
Safet 20. Generate a SOTIF report compliant with the
e ISO/PAS 21448 standard
Cerel ;::ﬁf:ll 21. Complete ASIL level (B-D) safety demonstration
4 Certification Prep 22. Prepare UNECE R157 type approval materials
and iteration 23. Establish an OTA data return channel
Continuous 24. Deploy federated learning update mechanism
learning iteration | 25. Implement dynamic risk assessment based on
Bayesian networks

Key Innovations

Innovation 1: Extend traditional MIL/SIL/HIL testing to a "Digital Twin-Physical Domain-Real
World" three-dimensional validation framework, constructing a multi-level verification model.

Innovation 2: Introduce GANs (Generative Adversarial Networks) to build an optical attack scenario
library, establishing an adversarial testing mechanism.

Innovation 3: Real-time mapping of system capability boundaries based on deep reinforcement
learning, creating a dynamic risk assessment model.

Innovation 4: Establish a mapping model between driver cognitive load and system explainability,
quantifying human factors engineering relationships.

6 Conclusion
This paper provides a comprehensive analysis of the limitations of existing safety testing methods.

While traditional simulation testing and real vehicle testing each have their advantages and
disadvantages, neither can fully assess the safety of autonomous driving systems in complex scenarios.

— 10—
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Therefore, a comprehensive testing framework based on a hybrid testing strategy is proposed to more
accurately evaluate the reliability and adaptability of autonomous driving vision systems. Additionally,
by combining big data analysis and artificial intelligence technologies, a data-driven testing framework
is established that can continuously optimize and improve safety testing methods to address the ever-
changing traffic environment and technological challenges. Effective safety testing can significantly
reduce accident rates and increase public trust and acceptance of autonomous driving technology, thus
accelerating the application and widespread promotion of new technologies.

Additionally, this paper also delves into the safety testing technology framework based on vision
systems, explaining how to improve the effectiveness of the vision system through comprehensive
evaluation metrics under different environmental conditions. At the same time, the importance of diverse
testing scenarios and evaluation standards is emphasized in the discussion of testing processes,
particularly how advanced signal monitoring technologies and image recognition algorithms can be used
for detection and recognition in dynamic scenarios. Ensuring the accuracy and credibility of the testing
results will lay a solid foundation for the future safety of autonomous driving systems. By establishing
an iteratively optimized feedback mechanism, dynamic adjustments to testing strategies and parameters
can better adapt to technological advancements and changes in market demands.
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